If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2=24+28
We move all terms to the left:
4t^2-(24+28)=0
We add all the numbers together, and all the variables
4t^2-52=0
a = 4; b = 0; c = -52;
Δ = b2-4ac
Δ = 02-4·4·(-52)
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{13}}{2*4}=\frac{0-8\sqrt{13}}{8} =-\frac{8\sqrt{13}}{8} =-\sqrt{13} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{13}}{2*4}=\frac{0+8\sqrt{13}}{8} =\frac{8\sqrt{13}}{8} =\sqrt{13} $
| 5(x+9)=15+2x+303x | | -11x+32.5=82 | | (x+75)+(x-12)=180 | | 0=5x^2-4x+6 | | 2x+62=-8 | | 62x=63×+57 | | 2(4x+5)+3(2x+4)=-10 | | x/3−16=x/12+14 | | 2(4x+5)+3(2x+4=-10 | | 2(x+1/3-1)=8 | | 3x-10=2x^2-10x+10 | | (x)=-x^2+18 | | 9x^2+5x=-10 | | 2(4x+5)+3(2+4)=-10 | | 15=2x^2-x | | 0=8x^2-10x+3 | | 0=2x^2+6x+8 | | -15x=371 | | 0=2x^2-32x+128 | | 6(3-x)+(-20)=10+3(4x+2$ | | 5(5+4m)=53 | | x-9=20-2x | | -5m+8=2m-6 | | 19*(x-50)=180 | | 18-12a=6+12a | | 2x3=6x5=30 | | 4q-2(10)=40 | | 18-12a=6-12a | | 14=11+w÷8×6 | | 3-12a=6-12a | | 7a+-4=-7a+10 | | 5x-3=3(x+7)+3,x |